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Does the Factor Structure of IQ Differ Between the Differential Ability
Scales (DAS-II) Normative Sample and Autistic Children?
Caitlin C. Clements , Marley W. Watkins, Robert T. Schultz, and Benjamin E. Yerys

The Differential Abilities Scales, 2nd edition (DAS-II) is frequently used to assess intelligence in autism spectrum disorder
(ASD). However, it remains unknown whether the DAS-II measurement model (e.g., factor structure, loadings), which
was developed on a normative sample, holds for the autistic population or requires alternative score interpretations. We
obtained DAS-II data from 1,316 autistic individuals in the Simons Simplex Consortium and 2,400 individuals in the nor-
mative data set. We combined ASD and normative data sets for multigroup confirmatory factor analyses to assess differ-
ent levels of measurement invariance, or how well the same measurement model fit both data sets: “weak” or metric,
“strong” or scalar, and partial scalar if full scalar was not achieved. A weak invariance model showed excellent fit
(Confirmatory Fit Index [CFI] > 0.995, Tucker Lewis Index [TLI] > 0.995, root mean square error of approximation
[RMSEA] < 0.025), but a strong invariance model demonstrated a significant deterioration in fit during permutation test-
ing (all p’s<0.001), suggesting measurement bias, meaning systematic error when assessing autistic children. Fit improved
significantly, and partial scalar invariance was achieved when either of the two spatial subtest (Recall of Designs or Pat-
tern Construction) intercepts was permitted to vary between the ASD and normative groups, pinpointing these subtests
as the source of bias. The DAS-II appears to measure verbal and nonverbal—but not spatial—intelligence in autistic chil-
dren similarly as in normative sample children. These results may be driven by Pattern Construction, which shows higher
scores than other subtests in the ASD sample. Clinicians assessing autistic children with the DAS-II should interpret ver-
bal and nonverbal reasoning composite scores over the spatial score or General Composite Ability. Autism Res 2020,
13: 1184–1194. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.

Lay Summary: The Differential Abilities Scales, 2nd edition (DAS-II) is a popular intelligence quotient (IQ) test for
assessing children with autism. This article shows that the DAS-II spatial standardized scores should be interpreted with
caution because they hold a different meaning for autistic children. Verbal and nonverbal reasoning scores appear valid
and to hold the same meaning for those with and without autism spectrum disorder.

Keywords: autism spectrum disorders; autistic disorder; intelligence; educational psychology; factor analysis;
psychometrics

Introduction

Intellectual disability (ID) commonly co-occurs with
autism spectrum disorder (ASD): approximately 50% of
autistic individuals meet criteria for ID [Charman et al.,
2011; Loomes, Hull &Mandy, 2017]. To assess ID in
school-age autistic children, clinicians frequently use the
DAS-II (Differential Ability Scales, 2nd Edition, Elliott,
2007a) to measure cognitive ability. However, it remains
unknown whether the DAS-II functions similarly in autis-
tic and neurotypical children [Wicherts, 2016]. The DAS-
II measurement model (i.e., the relationship between sub-
tests and the latent constructs of verbal, nonverbal, and
spatial intelligence which is described by the factor

structure, factor loadings, covariances, etc.) was devel-
oped with a nationally representative normative sample
and has never been tested in a large autistic sample to our
knowledge. If the DAS-II measurement model fails to
hold for autistic children, alternative methods and score
interpretations will be needed for measuring cognitive
ability and informing ID assessments.

Research has shown that the measurement models of
some intellectual assessments perform differently in some
subgroups. For example, the DAS-II measurement model
showed small differences for a sample of African Americans
[Trundt, Keith, Caemmerer, & Smith, 2018], the WISC-IV
measurement model showed differences for a sample with
attention-deficit/hyperactivity disorder [Thaler et al., 2015],
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and a factor analysis of the WAIS-R, WAIS-III, WISC-R, and
WISC-III in a sample of high functioning autism identified
a “social context” factor not present in the normative sam-
ple [Goldstein et al., 2008]. When a measurement model
performs differently in a particular subgroup, this suggests
that measurement bias affects scores for individuals in that
subgroup such that their measured scores do not reflect
their true scores on the latent trait (e.g., nonverbal intelli-
gence) in the same way that scores for the normative group
do, whether driving measured scores up or down [Reyn-
olds & Lowe, 2009]. Please note that throughout this article,
the terms “nonverbal intelligence quotient” or NVIQ are
used instead of fluid reasoning (gf) for consistency with
DAS-II nomenclature [Elliott et al., 2018, p. 372].

Clinicians have long discussed “IQ splits” in individuals
with ASD, and recent research lends more support to this
observed phenomenon. Siegel, Minshew, and Goldstein
[1996] initially reported that in 45 high-functioning autistic
individuals, 36% of participants showed unusually large dif-
ferences (i.e., 12 IQ points in standard scale of mean
100, standard deviation 15) between their nonverbal IQ
and verbal IQ scores (20% NVIQ > verbal IQ [VIQ], 16%
VIQ > NVIQ). Many other researchers reported similar data,
and an analysis of the largest known sample of DAS-II data
on autistic children (n = 2,110; the Simons Simplex Consor-
tium [SSC]) confirmed the “splits” finding with 32% of
individuals showing DAS-II Early Years NVIQ > VIQ dis-
crepancies of at least 16 points, and 20% showing the same
discrepancy on DAS-II School Age [Nowell, Schanding,
Kanne, & Goin-Kochel, 2015]. At present, it is unclear
whether these “splits” reflect true differences between ver-
bal and nonverbal intelligence, or are better attributed to
measurement bias due to a poor fit of the DAS-II measure-
ment model in autistic children. This question can be
answered by testing measurement invariance.

Measurement invariance is a method to determine
whether an assessment such as the DAS-II measures the
same latent construct with the same precision in multiple
populations. In other words, it tests whether the observed
test score of an individual—who has a certain true score
on the latent construct—is independent of that individ-
ual’s group membership [Thompson, 2016]. Different
levels of measurement invariance are tested sequentially
with increasing strictness. At the first level, the same confir-
matory factor model is fit to each group separately. This level
of invariance merely demonstrates that the same model
can be fit to each group but does not rule out measure-
ment bias in the relationship between one group’s test
scores and true ability. At the second or “weak” factorial
invariance level, configural invariance, a multigroup model
is fit to the combined data sets; this model requires that
the same items load on the same factors for each group but
imposes no between-group constraints on factor loadings
or any other parameters. At the third level, also referred to
as “weak” factorial invariance, factor loadings are constrained

to be equal in both groups but no other between-group
constraints are imposed. At the fourth level, scalar or
“strong” factorial variance is required to conclude that
between-group differences in mean scores are entirely due
to true group differences in latent abilities and not mea-
surement bias. Scalar invariance requires equality between
groups on intercepts and permits estimation of differences
between group factor means by no longer setting factor
means equal to zero as in metric and configural invariance.
In one final level, residual or “strict” invariance, residuals
are constrained to be equal in both groups. However, this
level of factorial invariance is not necessary; it is widely
accepted that scalar or “strong” invariance is sufficient for
the use of a measure with a particular population, such as
autistic children. If scalar invariance is achieved between
the autistic and normative samples, then it can be con-
cluded that group differences in nonverbal, verbal, and
spatial intelligence scores reflect true group differences in
ability. If scalar invariance is not achieved, then group dif-
ferences might be due to measurement bias and artifacts
rather than true differences in intelligence; thus an autistic
child’s DAS-II score would be biased compared to the nor-
mative sample.

The objective of this study is to determine whether
DAS-II scores are biased for autistic children.

Methods
Participants

The ASD sample was drawn from the SSC, which was a
multisite study of 2,110 children ages 4–18 years who
met gold-standard diagnostic criteria for ASD. Partici-
pants completed a comprehensive diagnostic and behav-
ioral testing battery that included the DAS-II School
Age core subtests. For additional information on SSC
data collection, recruitment, diagnoses, and inclusion
criteria, see Fischbach & Lord, 2010. SSC participants
were included in the present study if they had a DAS-II
School Years subtest score (n = 1,316; see Table 1). Over
90% of participants had complete data on all six core
DAS-II subtests.

The control sample consisted of the nationally repre-
sentative DAS-II School Age normative sample ages
6–17 years (n = 2,400; see Table 1) and was provided by
Pearson, publisher of the DAS-II. For additional informa-
tion on this sample, see the DAS-II Technical Manual
[Elliott, 2007b].

This study was approved by The Children’s Hospital of
Philadelphia Institutional Review Board and adheres to
the legal requirements of the United States.

Data Analysis

Missing data. Eight of 2,400 individuals in the norma-
tive data set (Standardization data from the Differential
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Ability Scales-II (DAS-II). Copyright 1998, 2000, 2004,
2007 NCS Pearson, Inc. and Colin D. Elliott. Normative
data. Copyright 2007 NCS Pearson, Inc. Used with per-
mission. All rights reserved.) were missing data on one
subtest. The ASD sample showed significantly more miss-
ing data (119 of 1,316 participants). While each nonver-
bal and spatial subtest had data from >99% of ASD
participants, both verbal subtests were missing for 8.1%
of participants (n = 106). Data were not missing at ran-
dom: the 106 participants with verbal subtest mis-
singness showed substantially lower verbal abilities on
other measures (Verbal Communication score on the
Autism Diagnostic Interview—Revised, t(120) = −7.08,
P < 0.001, mean missing = 19.0, mean nonmissing = 16.3)
and module selected for the Autism Diagnostic Observa-
tion Schedule, which is based on language level and age
(χ2(3) = 586.0, P < 0.001). The ASD sample showed a very
wide ability range with and without these 106 partici-
pants, and in fact the range of General Composite Ability
remained the same (40–167).
All analyses were conducted on the full data sets that

included all participants, including those missing subtest
score(s) which were imputed by Full Information Maxi-
mum Likelihood, following the guidelines provided by
Newman [2014]. Then, in an effort to explore any bias
introduced by the missing data from 119 ASD partici-
pants, we conducted sensitivity analyses to determine
whether meaningful differences resulted. First, we recon-
ducted analyses excluding participants with missing data
(i.e., listwise deletion). Second, we adjusted imputed
values by subtracting and adding arbitrary values
(implemented with the mice package in R [van Buuren &
Groothuis-Oudshoorn, 2011]), then we reconducted ana-
lyses with the new data sets. Third, we tested the base
oblique model in the ASD data set alone using an auxil-
iary variable related to verbal communication: the parent
report ADI-R (Autism Diagnostic Interview—Revised)

verbal communication total score. Auxiliary variable
analysis and Full Information Maximum Likelihood were
implemented in Mplus v8.2 [Muthén & Muthén, 1998].

Confirmatory factor analysis. First, we determined
the base model for invariance testing by fitting the same
confirmatory factor model separately to the normative
data and to the ASD data to ensure the most basic mea-
surement model fit both samples. In selecting the target
model, we consulted the DAS-II Technical Manual, which
reported two models. The first model, a correlated three-
factor (“oblique”) model, uses the six core subtests, simi-
lar to our data set [Elliott, 2007b, p. 159]. The correlated
three-factor model allows correlations between the three
factors (verbal, nonverbal reasoning, and spatial) and
does not include a higher-order general (g) factor (Fig. 1).
The Technical Manual describes a second model, the
higher-order model, which uses both the six core subtests
and the less frequently used six diagnostic subtests
[Elliott, 2007b, p. 157]. In the higher-order model, the six
core subtests load onto three factors (verbal, nonverbal
reasoning, and spatial), which in turn load onto a general
(g) factor; the diagnostic subtests load onto three separate
factors that in turn load onto g (Fig. S1). Of note, for the
six-core subtest battery, the Technical Manual reports fit
statistics for the correlated three-factor and not the
higher-order model. The Technical Manual does not
describe fitting the higher-order model to the six-core
subtest battery alone, which is most commonly used clin-
ically and in our ASD data set. Note that we use the classi-
cal definition of the term “higher-order model” to refer to
the model in Figure S1, which is sometimes called by the
name of the more general category to which it belongs,
“hierarchical model.”

In addition, we fit bifactor models demonstrated by
previous research to fit the normative data [e.g., Canivez &
McGill, 2016; Dombrowski, Golay, McGill, & Canivez,

Table 1. Participant demographics

Normative sample ASD sample Normative sample with complete data ASD sample with complete data

N 2400 1316 2388 1197
% Malea 50.0 87.4 50.0 87.9
Age in years, mean [SD] 12.0 [3.5] 10.5 [3.7] 12.0 [3.5] 10.5 [3.7]
DAS-II Global Composite Ability 99.9 [15.2] 94.3 [19.8] 99.9 [15.2] 94.4 [19.7]
DAS-II Nonverbal Composite 99.8 [14.8] 93.4 [19.1] 99.8 [14.8] 95.0 [18.6]
DAS-II Verbal Composite 100.0 [15.1] 92.9 [22.6] 100.0 [15.1] 93.0 [22.5]
DAS-II Spatial Composite 99.8 [14.9] 95.1 [18.2] 99.9 [14.9] 96.3 [18.1]
Subtest matrices (n) 50.2 [10.2] 46.7 [12.3] 50.2 [10.2] 47.5 [12.1]
Pattern construction (s) 50.0 [9.9] 48.9 [11.6] 50.0 [9.9] 49.6 [11.7]
Recall of designs (s) 50.0 [9.9] 45.6 [11.6] 50.0 [9.9] 46.4 [11.4]
sequential and quantitative reasoning (n) 50.2 [10.3] 45.8 [12.9] 50.2 [10.3] 46.9 [12.6]
Verbal similarities (v) 50.2 [9.9] 46.2 [13.9] 50.2 [9.9] 46.3 [13.8]
Word definitions (v) 50.1 [9.8] 45.5 [14.7] 50.1 [9.8] 45.5 [14.7]

Note. All DAS-II values show mean [SD] of the standard score; lowercase letters in parentheses denote composite in which subtest is scored.
aMissing for 56 individuals with ASD.
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2018; Dombrowski, McGill, Canivez, & Peterson,
2019]. A bifactor model includes the general factor and
group factors (i.e., verbal, nonverbal, and spatial) and
assumes that the general factor is orthogonal to the group
factors. Note that we use the classical definition of the
term “group factor” to refer to verbal, nonverbal, and spa-
tial factors (sometimes referred to as specific factors). We
fit two bifactor models: a three-factor bifactor model with
verbal, nonverbal, and spatial group factors and g as
suggested by Canivez and McGill [2016], and a two-factor
bifactor model with verbal and spatial group factors, and

the two nonverbal reasoning subtests loading directly on
g instead of a nonverbal factor (Fig. S2) as reported by
Dombrowski et al. [2018]. In the bifactor models, we
fixed correlations between all factors at zero, and fixed
equality between the two factor loadings on each group
factor, which decreases the number of parameters being
estimated and thus allows model identification. Finally,
we also fit a simple unidimensional model that allowed
the six subtests to load directly on g.

Measurement invariance. Next, we combined the nor-
mative and ASD data sets into one multigroup data set.
We used the best model established in the previous step
to test sequentially stricter levels of measurement invari-
ance: configural, metric (weak), scalar (strong), then resid-
ual (strict). If invariance was not achieved, we ran partial
invariance tests to identify the locus of misfit.

Comparisons between measurement invariance models
were made in accordance with recommendations by
Jorgensen, Kite, Chen, and Short [2018] to assess statisti-
cal significance rigorously via permutation testing, rather
than cutoffs established by Chen [2007], which have
inconsistent Type I error rates. In each permutation,
group membership was randomly assigned; a distribution
was built from 1,000 replications then used to determine
whether true group membership differed significantly
from what would be expected under the null hypothesis,
as evidenced by the size of change among fit indices dur-
ing the replications. We rejected models with P < 0.05 on
multiple fit indices in favor of the simpler model in the
comparison.

All primary factor analyses were implemented in Mplus
version 8.2 [Muthén & Muthén, 1998]. Permutation test-
ing, sensitivity analyses, and all remaining analyses were
implemented in R version 3.5.2 (R Core Team, 2018)
using packages lavaan [Rosseel, 2012] and semTools
[Jorgensen, Pornprasertmanit, Schoemann, & Rosseel,
2019]. All models were estimated with maximum likeli-
hood with robust standard errors (implemented with
MLR) due to significant non-normality of every subtest in
both data sets according to the Shapiro–Wilk test (all
W > 0.95, all P < 0.02).

Results
Confirmatory Factor Analysis

First we fit a correlated three-factor model as reported in the
Technical Manual for the six-subtest core battery. The
model demonstrated excellent fit with the data, as
expected. See Tables 2 and 3, and Table S1 for complete fit
statistics for all models and intersubtest correlations. The
higher-order model yielded a factor loading >1.0 of the
nonverbal factor on g for both the normative (1.005) and
ASD (1.045) data sets (Table S1). These results suggest that

A Normative sample

B ASD sample

Figure 1. Correlated three-factor model for (a) normative and
(b) ASD samples. VerbSim, verbal similarities; WordDef, word defi-
nitions; Pattern, pattern construction; Recall, recall of designs;
SeqQuant, sequential and quantitative reasoning.
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the nonverbal factor contributes no specific variance. In
other words, the general factor absorbs all variance in the
nonverbal factor. We next attempted to fit a three-factor
bifactor model that allows subtests to load on both group
and general factors. The three-factor bifactor model did not
converge for either the normative or ASD data sets. After
removing individuals with missing data, however, the
model converged for the normative data set and yielded a
factor loading of 1.00 for the nonverbal factor on g, indicat-
ing persistence of nonverbal factor variance issues. Addi-
tionally, the three-factor bifactor model did not converge at
all for the ASD data set. A bifactor model with two group
factors (verbal and spatial) and g loaded by all six core sub-
tests (i.e., the nonverbal subtests did not form a general fac-
tor) converged for both data sets and showed excellent fit.

The unidimensional model demonstrated poor fit for each
group (TFI and CLI < 0.94 for both ASD and Norm groups;
Table 3) and did not merit further exploration.

An acceptable base solution must be adequate in terms of
both model fit and psychological interpretation [Jöreskog,
1969]. The higher-order and bifactor models with three
first-order and group factors, respectively, were psychologi-
cally interpretable but produced improper solutions or
failed to converge [Diamantopoulos & Siguaw, 2003], mak-
ing them inappropriate for consideration as base models for
invariance testing. The three-factor oblique model and the
two-factor bifactor model without a separate nonverbal
group factor both exhibited acceptable model fit although
the oblique model showed slightly better fit than the two-
factor bifactor model on many indices (χ2, P, Confirmatory

Table 2. DAS-II subtest correlations

Matrices
Pattern

construction
Recall of
designs

Sequential and
quantitative reasoning

Verbal
similarities

Word
definitions

Matrices 1 0.54 0.48 0.62 0.50 0.49
Pattern construction 0.62 1 0.55 0.58 0.46 0.44
Recall of designs 0.58 0.67 1 0.51 0.43 0.42
Sequential and
quantitative reasoning

0.72 0.63 0.57 1 0.54 0.54

Verbal similarities 0.58 0.46 0.45 0.62 1 0.65
Word definitions 0.57 0.47 0.46 0.64 0.79 1

Note. The upper set of correlations depicts the normative data set; the lower set depicts the ASD data set.

Table 3. Model fit statistics

Model df χ2 P CFI TLI RMSEA (90%) SRMR AIC

Unidimensional
Normative 9 385.0 0.000 0.934 0.890 0.132 (0.121–0.143) 0.040 101,304.5
ASD-SSC 9 537.6 0.000 0.864 0.774 0.211 (0.196–0.227) 0.060 56,529.0
Correlated three-factor (Oblique)
Normative 6 4.9 0.555 1.000 1.000 0.000 (0.000–0.024) 0.005 100,913.6
ASD-SSC 6 13.3 0.038 0.998 0.995 0.030 (0.007–0.053) 0.009 55,941.3
Higher-order
Normative 6 4.9 0.555 1.000 1.000 0.000 (0.000–0.024) 0.005 100,913.6
ASD-SSC 6 13.3 0.038 0.998 0.995 0.030 (0.007–0.053) 0.009 55,941.3
Bifactor, three-factor
Normativea 9 23.3 0.001 0.997 0.996 0.026 (0.013–0.039) 0.042 100,518.0
ASD-SSC 9 — — — — — — —

Bifactor, two-factor
Normativea 7 5.0 0.654 1.000 1.001 0.000 (0.000–0.020) 0.005 100,911.8
ASD-SSC 7 22.4 0.002 0.996 0.992 0.041 (0.023–0.060) 0.013 55,949.8
Measurement invariance
Configural 12 18.8 0.094 0.999 0.998 0.017 (0.000–0.032) 0.007 156,854.9
Metric 15 24.7 0.054 0.999 0.998 0.019 (0.000–0.031) 0.016 156,856.0
Scalar 18 133.7 <0.001 0.988 0.980 0.059 (0.050–0.068) 0.035 156,968.7
Partial scalar: Spatialb 17 29.6 0.030 0.999 0.998 0.020 (0.006–0.032) 0.019 156,857.3
Partial scalar: Nonverbalb 17 130.9 <0.001 0.988 0.979 0.060 (0.051–0.070) 0.035 156,967.8
Partial scalar: Verbalb 17 131.3 <0.001 0.988 0.979 0.060 (0.051–0.070) 0.033 156,968.3
Partial scalar, strict: Spatialb 23 52.7 <0.001 0.997 0.996 0.026 (0.018–0.035) 0.015 156,874.4

Abbreviations: AIC, Akaike information criterion; SRMR, standardized root mean square residual.
aResults from n = 2388 with participants with missingness excluded; model did not converge with data set with missing data (n = 2400).
bThe intercept of one subtest on the respective spatial, nonverbal, or verbal factor is free to vary between groups; model fit is identical in the two

models of the factor’s two subtests varying.
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Fit Index [CFI], Tucker Lewis Index [TLI], standardized root
mean square residual, and for ASD only, root mean square
error of approximation [RMSEA]), particularly for the ASD
data set. Although the two-factor bifactor model could

reasonably be selected as the base model, the correlated
three-factor model was identified by the publisher, and its
results are more easily interpreted by clinicians because the
three factors translate directly to the three DAS-II composite

Table 5. Models compared with permutation testing on multiple fit indices

χ2 CFI RMSEA TLI AIC SRMR

Model Comparison
Configural vs. baseline
Delta 20.2 0.999 0.019 0.998 156,854.9 0.006
P value >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
Metric vs. configural
Delta 7.1 <0.001 0.002 <0.001 1.09 0.005
P value 0.13 0.12 0.048 0.064 0.13 0.099
Scalara vs. metric
Delta 118.7 −0.011 0.041 −0.017 112.7 0.013
P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Partial scalara vs. metric
Delta 5.3 0.000 0.001 0.000 1.3 0.001
P value 0.069 0.066 0.048 0.051 0.069 0.016
Partial scalara vs. scalara

Delta −113.4 0.010 −0.040 0.017 −111.4 −0.012
P value >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
Partial scalara vs. strict partial scalara

Delta 29.1 −0.002 0.008 −0.002 17.1 0.003
P value <0.001 <0.001 <0.001 <0.001 <0.001 0.1

Note. More complex model being tested appears first. Permutation testing executed using the permuteMeasEq function in the semTools R package.
Abbreviations: AIC, Akaike information criterion; SRMR, standardized root mean square residual.
aThe recall of designs intercept was freed to vary between groups.

Table 4. Unstandardized factor means and subtest intercepts, by model

Configural Metric Scalar Partial scalara Partial scalarb Partial scalar, stricta

Factor means Fixed at 0 Fixed at 0 Free Free Free Free
Factor loadings Free Invariant Invariant Invariant Invariant Invariant
Factor intercepts Free Free Invariant 5/6 invariant 5/6 invariant 5/6 invariant
Residuals Free Free Free Free Free Invariant
Normative
Verbal 0 0 0 0 0 0
Nonverbal 0 0 0 0 0 0
Spatial 0 0 0 0 0 0
Matrices (n) 50.2 50.2 50.3 50.3 50.3 50.3
Pattern construction (s) 50.0 50.0 50.5 50.0 50.0 50.0
Recall of designs (s) 50.0 50.0 49.3 50.0 50.0 50.0
Sequential and quantitative reasoning (n) 50.2 50.2 50.1 50.1 50.1 50.1
Verbal similarities (v) 50.2 50.2 50.3 50.3 50.3 50.3
Word definitions (v) 50.1 50.1 50.0 50.0 50.0 50.0
ASD
Verbal 0 0 −0.64 −0.64 −0.64 −0.65
Nonverbal 0 0 −0.50 −0.50 −0.50 −0.51
Spatial 0 0 −0.34 −0.14 −0.63 −0.14
Matrices (n) 46.6 46.6 50.3 50.3 50.3 50.3
Pattern construction (s) 48.9 48.9 50.5 50.0 53.8 50.0
Recall of designs (s) 45.6 45.6 49.3 46.6 50.0 46.6
Sequential and quantitative reasoning (n) 45.7 45.7 50.1 50.1 50.1 50.1
Verbal similarities (v) 45.5 45.4 50.3 50.3 50.3 50.3
Word definitions (v) 44.6 44.6 50.0 50.0 50.0 50.0

Note. Lowercase letters denote factor onto which subtest loads. See Table S2 for standardized loadings and correlations. See Table S3 for
unstandardized intercepts and means for other partial scalar invariance models.

aThe recall of designs intercept was freed to vary between groups.
bThe pattern construction intercept was freed to vary between groups.
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scores of verbal, nonverbal reasoning, and spatial, whereas
the two-factor bifactor model lacks the nonverbal reasoning
factor. Consequently, the correlated three-factor model was
chosen as the base model to test measurement invariance
between the ASD and normative groups. The final model
was tested with the ADI-R verbal communication auxiliary
variable, and results did not change meaningfully.

Measurement Invariance

Full invariance. We used the correlated three-factor
model to test measurement invariance between the
ASD and normative groups. Results indicated that con-
figural and metric invariance were achieved (see
Tables 3 and 5). Scalar invariance was not achieved: on
all fit indices, permutation testing showed a significant
deterioration in fit (all Ps < 0.001, Table 5). Traditional
metrics also provided evidence of poor scalar model fit:
CFI, TLI, and RMSEA showed change beyond accept-
able limits and RMSEA rose over the 0.05 threshold
[Chen, 2007].

Partial invariance. Partial scalar invariance was
assessed by allowing single subtest intercepts to vary
between groups. We observed little change in the
model when verbal factor subtests (word definitions or
verbal similarities) or nonverbal factor subtests (matri-
ces or sequential and quantitative reasoning) were
allowed to vary, suggesting that the model easily
accommodates equality between ASD and normative
intercepts on these subtests; group differences in verbal
and nonverbal factor scores are due to true group dif-
ferences in verbal and nonverbal abilities, not bias.
This pattern was not true for the subtests loading on
the spatial factor (pattern construction and recall of
designs). When either of these intercepts was freed to
vary between groups, the model fit improved signifi-
cantly on all indices. This partial scalar invariance
model (i.e., with the recall of designs intercept freed)
was then tested for partial strict invariance or holding
residuals equal between groups. Partial strict invariance

was not achieved (five of six fit indices with P’s ≤ 0.01;
Table 5).

A closer look at the full scalar model revealed that
the Recall of Designs subtest intercept was 49.3 when
held equal between groups; when freed to vary between
groups, the Recall of Design intercept was 50.0 for the
normative group and 46.6 for the ASD group (Table 4,
Fig. 2), suggesting that autistic children are expected to
have a lower Recall of Designs score than neurotypical
children with the same true spatial ability. The oppo-
site pattern was observed for the other spatial subtest,
Pattern Construction: when freed, the intercept was
50.0 for the normative group and increased to 53.8 for
autistic children, indicating that they have a higher Pat-
tern Construction score than neurotypical children of
the same ability. For comparison, the four verbal and
nonverbal subtest intercepts showed much smaller
changes, and remained within 0.6 points of the norma-
tive group intercept when freed (Table S3). Unlike the
verbal and nonverbal factors, spatial factor group dif-
ferences are not only due to true group differences in
spatial ability; some of the difference is also due to
measurement bias. For additional data and factor load-
ings, see Tables S1–S3.

Factor mean differences. As expected, we observed
mean between-group differences on all three factors
(Table 4). Autistic children showed unstandardized fac-
tor scores that were 0.64, 0.50, and 0.34 lower than
normative verbal, nonverbal, and spatial scores, respec-
tively. Unfortunately, we can interpret only the direc-
tion, not the size, of these mean differences because
they were obtained with the scalar model, which
showed a poor fit with the data. The mean factor differ-
ences changed in the partial scalar models, but the
direction always remained the same.

Missing data. Sensitivity analyses conducted with
adjustments to imputed values showed no meaningful
differences from primary measurement invariance
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Figure 2. Change in intercept when no longer constrained equal between groups. Cons, constrained; VerbSim, verbal similarities;
WordDef, word definitions; Pattern, pattern construction; Recall, recall of designs; SeqQuant, sequential and quantitative reasoning.
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analyses (i.e., minimal or zero change in fit indices, fac-
tor loadings, means, or intercepts).

Discussion

Our findings indicate that the DAS-II School Age measures
verbal and nonverbal intelligence in autistic children simi-
larly to how itmeasures these constructs inneurotypical chil-
dren, but the same is not true of spatial intelligence. Weak
measurement invariance (metric and configural) was
achieved for the DAS-II in a multigroup confirmatory factor
analysis using a correlated three-factor model, but strong
(scalar) measurement invariance was not achieved. Without
scalar invariance, groupmean differences in DAS-II scores do
not reflect true group differences in intelligence alone but
also unique aspects due to being autistic (i.e., measurement
bias). Since partial scalar invariance was achieved only when
the spatial subtest intercepts were free to vary, we attribute
failed scalar invariance to group bias or artifacts in the spatial
subtests.

Interpreting DAS-II Spatial Subtest Scores for Children
With ASD

The two spatial subtests showed large changes in intercepts,
in opposite directions, when the intercepts were free to vary
between groups. The Recall of Designs intercept for autistic
children fell 3.4 points below the normative intercept,
while the Pattern Construction intercept rose 3.8 points
above the normative intercept. These results indicate that
for each subtest, an autistic child’s score is expected to be
below or above, respectively, the score of a neurotypical
child with the same true spatial ability. Simply put, Recall
of Designs underestimates an autistic child’s true ability,
and Pattern Construction overestimates it. The large differ-
ences in opposite directions for the spatial subtests should
not be interpreted as “cancelling each other out” because it
is likely that different (and unknown) proportions of each
subtest’s change are due to measurement bias. Although
some methods exist for quantifying bias [Nye & Drasgow,
2011], they are more readily applied to unidimensional
models than to our three factor model.

The Pattern Construction subtestmay be driving the prob-
lematic fit: the average autistic participant performed much
better on this subtest than on any other. On average, the
ASD sample scored around 46 points on all other subtests
(45.5–46.7 points; Table 1), but almost three points higher
on Pattern Construction (48.9 points). In contrast, the nor-
mative sample showed nearly identical mean scores on all
subtests (50.0–50.2 points). Put another way, the normative
sample showed a 0 point difference between Pattern Con-
struction and Recall of Designs, while the autistic sample
showed a 3.3 point difference on these two spatial subtests.
These different patterns may explain why the normative

model did not fit the ASD data to achieve strong measure-
ment invariance. Consequently, the spatial score does not
hold the same meaning for children from the ASD and norma-
tive samples. For autistic children, the spatial subtestsmay be
tapping different abilities.

The failed measurement invariance is not attributable to
groupmean differences. As expected, the ASD group showed
average lower scores on every subtest, and every factor. Clini-
cians administering the DAS-II to autistic children might
consider placingmore emphasis on the verbal andnonverbal
reasoning composite scores instead of the spatial or compos-
ite GCA (General Conceptual Ability). Historically, some
ASD clinicians and researchers have relied upon the SNC
(special nonverbal composite) instead of the GCA because
the SNC excludes the verbal composite. The logic is that ver-
bal subtestsmaybe poor indicators of intelligence of an autis-
tic person, given the communication difficulties inherent in
the diagnosis. However, our results suggest that the spatial
score, not the verbal score, poses validity issues. We suggest
that clinicians avoid interpreting the SNC and GCA and
instead defer to the verbal and nonverbal reasoning stan-
dardized scores when utilizing the DAS-II. For example, an
autistic child with a true spatial intelligence of 95 could
record aDAS-II spatial composite score of 92, or 98; their true
spatial intelligence could be overestimated or under-
estimated, depending on the pattern of their Pattern Con-
struction and Recall of Designs subtest scores. Since it is not
possible at this time to quantify andpredict howeach autistic
child’s true spatial ability would be misrepresented by the
DAS-II Spatial Composite score, we recommend avoiding
interpretation of the DAS-II Spatial composite score for autis-
tic children, and consequently their SNC andGCA scores.

Implications for “IQ Splits” in ASD

These results suggest that the oft discussed autistic verbal–
nonverbal “IQ splits” are likely to be real, and not an arti-
fact of the DAS-II functioning differently in autistic children
than normative sample children. The ASD IQ splits refer to
differences between the verbal and nonverbal reasoning
scores and do not include the spatial score. Even when such
studies of IQ splits have used the DAS-II, such as Nowell
et al.’s [2015] investigation of splits in the present ASD data
set, the authors analyzed only the verbal and nonverbal
composite scores, not the spatial composite score. The ver-
bal and nonverbal composite scores reflect true differences
in verbal and nonverbal abilities, according to the partial
scalar invariance achieved in the present analysis.

Issues with Modeling the Nonverbal Reasoning Factor

Surprisingly, with the six core subtests, we were unable to fit
properly the higher-order factor model that the publisher
emphasizes. The published documentation only provides
higher-order model results for the infrequently used full
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battery of six core and six diagnostic subtests. The problem
in fitting the higher-order model to the six core subtests lay
in the nonverbal factor loading entirely onto the general fac-
tor and providing no specific variance. This issue resurfaced
when we attempted to fit a three-factor bifactor model,
whichdiffers from thehigher-ordermodel in that the general
factor is orthogonal to the group factors andnot permitted to
correlate with them. Both nonverbal subtests loaded directly
onto g, not the nonverbal factor. The issues were even more
salient in the ASD data set, where the nonverbal factor
showed an even higher and more improbable loading
(1.045) onto the general factor in the higher-order model,
and the three-factor bifactor model failed to converge at all.
Thus, the issue of the nonverbal factor not existing indepen-
dently of g seems intrinsic to the DAS-II and not specific to a
particular data set. Eliminating either the general factor (cor-
related three-factor model) or the nonverbal factor (two-
factor bifactor model) resolved the convergence issue and
the resultingmodels showed excellentfit.We are not thefirst
to report that the nonverbal factor may be absorbed entirely
by the general factor [Dombrowski et al., 2018], and that
second-order factors may provide little additional specific
variance over and above g [Canivez & McGill, 2016; Domb-
rowski et al., 2019]. However, it merits mention that when
additional DAS-II subtests enter into the model, such as all
20 subtests, other groups have replicated the publishers’
reported higher-order model [Dombrowski et al., 2019;
Keith, Low, Reynolds, Patel, &Ridley, 2010].

Limitations

The primary limitation of this study concerns the depth at
which we can understand the bias. The partial invariance
methods used here allow us to identify which factor(s) shows
bias, and the directionality of the bias for each subtest. We
cannot, however, transform differences in intercepts to dif-
ferences in DAS-II subtest points and suggest a correction.
We also do not know why the bias occurs in these particular
subtests. Future research to answer these questions would
involve an item-level analysis of differential item function-
ing between the normative and autistic samples.
A second limitation concerns the missing verbal subtest

data in the ASD data set, which was systematically missing
for individuals with lower verbal abilities on other auxiliary
verbal variables. Much autism research excludes individuals
with low verbal abilities [Russell et al., 2019], and we
wanted our results to generalize to this very understudied
population. Thus we included individuals with missing ver-
bal data in the analyses, and the missing data may have
affected model fit. To address this limitation, we reran all
invariance analyses twice: with complete cases only and
with imputed missing data for these subtests. In both alter-
native analyses, we found no meaningful change in results.
Finally, the SSC autistic sample used in this analysis,

while large and diverse in terms of race and ethnicity,

includes only simplex individuals, meaning individuals
with no first degree relatives with ASD. If simplex ASD is
found to be qualitatively different than multiplex ASD
(where ASD is present in one or more first degree rela-
tives), then these results may not generalize to multiplex
ASD. At present, this limitation does not cause concern
because no studies have identified significant differences
in the pattern of cognitive abilities between simplex and
multiplex ASD, to our knowledge.

Future Directions

Measurement invariance for autistic individuals has not
been investigated in other IQ assessments, such as the
Wechsler or Stanford–Binet scales, to our knowledge. Our
DAS-II findings suggest that such future analyses may be
important. Furthermore, future studies might test mea-
surement bias in commonly used ASD measures by sex as
larger data sets of females with ASD become available; mea-
surement invariance can be detected with as few as 200 par-
ticipants per group [Finch & French, 2016]. Finally, DAS
autistic norms could be developed to improve interpretabil-
ity of the spatial subtest scores for autistic populations.

Conclusions

The DAS-II Spatial standardized score should be inter-
preted with caution for autistic children. This score likely
includes measurement bias or artifacts present for autistic
children that are absent in the normative sample chil-
dren. The verbal and nonverbal reasoning standardized
scores do hold the same meaning for both autistic and
neurotypical children, according to these results from the
largest samples analyzed to date.
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