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700 CHAPTER 20 REVIEW OF THE WECHSLER INTELLIGENCE SCALE FOR CHILDREN-FIFTH EDITION 

The claim in the WISC-V Technical and Inter­
pretive Manual that PSW models are "research­
based" (p. 183) is debatable. There are three 
major models for using cognitive strengths and 
weaknesses to assist in the identification of chil­
dren with learning disabilities (Flanagan et al., 
2007; Hale et al., 2008; Naglieri & Das, 1997). 
The accuracy of those models was evaluated 
in a simulation study that found that all three 
failed to identify a large number of positive cases 
and falsely identified an even larger number of 
negative cases. Theoretically, these results sug­
gest that an ATI paradigm would be iatrogenic 
because the misidentified children would not 
receive treatments matched to their true ability 
profiles (Stuebing, Fletcher, Branum-Martin, & 
Francis, 2012). 

Subsequently, the accuracy of two of those 
PSW models (Flanagan et al., 2007; Hale et al., 
2008) was evaluated for adolescents with a 
history of failure to respond to academic inter­
ventions (Miciak, Fletcher, Vaughn, Stuebing, 
& Tolar, 2014). Results revealed that there was 
poor agreement between the two models in 
identifying children with learning disabilities 
(kappa of -.05 to .31), and there was no pattern 
of academic skills that distinguished the children 
identified by these models. Based on these 
results, the authors concluded that "until em­
pirical research provides more evidence for the 
validity, reliability, and utility of PSW methods, 
resources may be better allocated toward directly 
assessing important academic skills" (p. 3 5). 

The only supportive evidence for PSW 
methods presented in the WISC-V Technical 
and Interpretive f.r1anual was hy authors of PSW 
ri1odels, although five specific references "that 
document empirically proven links between 
cognitive processes and achievement domains" 
(p. 183) were provided. However, all five sources 
were authored hy developers of PSW models, 
and little experimental evidence was provided 
in any of them. To the contrary, a quantitative 
review of the evidence of the treatment valid­
ity of instruction based on putative cognitive 
strengths and weaknesses found that "a minority 

of reviewed studies supported the efficacy of 
cognitive interventions; fewer still when the 
cognitive component was not paired with an 
academic intervention" (Kearns & Fuchs, 2013, 
p. 285). Considered in conjunction with the 
ATI evidence, it appears that, when put to the 
test, PSW approaches fail in botl1 identification 
and intervention. None of this antithetical 
evidence is provided in the WISC-V Technical 
and Interpretive IYianual. 

WISC-V Review Summary 

There are many posi6ve aspects of the WISC-V 
Specifically, the WISC-V includes a large, demo­
graphically representative normative sample that 
allows generalizability of individual WISC-V 
performance to the U.S. population at large. 
Changes to instructions, subtest discontinue 
(ceiling) rules, and attractive, well-constructed 
materials are also major advantages. In particular 
improvements in instructions were noted for 
Block Design, Picture Concepts, the Working 
Memory subtests, and the Processing Speed 
subtests. Inclusion of subtests, such as Visual 
Puzzles and Figure Weights, two subtests that 
appear better indicators of reasoning abilities, is 
also quite positive. Additionally, tl1e publisher is 
commended for providing correlation matrices 
and descriptive statistics so that independent 
researchers can study some aspects of the 
WISC-V 

As described, there are also problems with 
the WISC-V Many of these problems would be 
ameliorated if there was greater adherence to the 
Standards for Educational and P1ychological Testing 
(AERA, APA, & NCME, 2014). Additionally, a 
more objective, scientific approach to the presen­
tation of evidence regarding the WISC-V should 
be cultivated. Clinicians are ultimately respon­
sible for use of the WISC-V, and they 'must be 
given complete, accurate, and objective informa­
tion on which to base their judgments. It must be 
noted that many of the problems discussed in this 
chapter have been reported in prior test reviews 



or articles. Failure to acknowledge or deal with 
them is a serious mistake that will not be in the 
long-term interest of the publisher or clinicians. 

INDEPENDENT ANALYSES 

Given our criticism of the structural validity 
analyses reported in the 1/VlSC-V Technical 
and Interpretive Manual, the remainder of this 
chapter is devoted to an independent examina­
tion of the WISC-V structure using both EFA 
and CFA methods, including presentation of 
variance estimates for subtests and factors as well 
as model-based latent factor reliability estimates. 
These analyses and results, which should have 
been included in the WISC-V manual, are 
presented in Appendix I in the downloadable 
resources: www.wiley.com/go/itwiscv to allow 
clinicians and researchers to assess additional 
psychometric features of the WISC-V in order 
to determine if various WISC-V scores pos­
sess sufficient evidence of validity for clinical 
interpretations. 

Whereas the complete independent anal­
yses are only available in the downloadable 
resources: www.wiley.com/go/itwiscv, Canivez 
and Watkins's conclusions from their analyses 
are presented here, followed by their general 
summary. 

CONCLUSIONS 

We were unable to replicate the structural valid­
ity results reported in the WISC-V Technical and 
Interpretive Manual. A comparison of our results 
in Table I. 9 (in downloadable resources: www 
.wiley.com/go/itwiscv) to results in Table 5.4 of 
the manual reveals discrepant chi-square values 
as well as divergences in the reported degrees of 
freedom for most models. The liVISC-V Techni­
cal and Interpretive Manual reported approximate 
fit statistics with two-digit precision so it is not 
possible to make accurate comparisons of our ap­
proximate fit statistics with three-digit precision. 

GENERAL SUMMARY 701 

Further, it is not possible to tell if inadmissi­
ble solutions were obtained for the five-factor 
models (model specification errors such as neg­
ative variance) but approximate fit statistics were 
reported in d1e liVISC-VTechnical and Interpretive 
Manual or whether those models converged with 
proper statistical estimates. 

Results from both EFA and CFA conducted 
in Appendix I (in downloadable resources: 
www.wiley.com/go/itwiscv) provide important 
considerations for clinical interpretation of 
basic scores from the WISC-V. Although the 
intention was to separate the former Perceptual 
Rasoning factor into separate Visual Spatial and 
Fluid Reasoning factors, it appears that this 
was not very successful, despite endorsement 
in the final measurement model selected by the 
publisher and development of standard scores 
for Visual Spatial and Fluid Reasoning. Had 
the publisher examined results from EFA or 
seriously considered the practical and theoretical 
issues created by tlie 1.00 loading of Fluid 
Reasoning on general intelligence in CFA, 
it would have been apparent that there were 
significant problems for separate Visual Spatial 
and Fluid Reasoning factors, given the available 
16 WISC-V subtests. Results from EFA and 
CEA converged and suggest that the best repre­
sentation ofWISC-V measurement is a bifactor 
model with four specific group factors, but the 
limited portions of variance uniquely captured 
by the four specific group factors is low and 
the W 8 coefficients indicated too little true score 
variance associated with the four specific group 
factors, with the possible exception of Processing 
Speed, to warrant confident interpretation in 
clinical practice. 

GENERAL SUMMARY 

Professional standards (American Educational 
Research Association, American Psychological 
Association, & National Council on Measure­
ment in Education, 2014) demand full and 
honest disclosure of psychometric features of 
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all scores and comparisons, but sadly many are 
missing or obfuscated for the WISC-V Given 
that numerous critiques and recommendations 
were known to the publisher (e.g., inclusion of 
EFA, bifactor CFA models, decomposed vari­
ance estimates for scores, provision of validity 
evidence for interpretations, disclosure of con­
tradictory evidence, and model-based reliability 
coefficients for composite scores), there is an 
appearance of intentionality to the absence 
of these analyses from the U/JSC-V Technical 
and Interpretive !11anual. Clinicians are unable 
to make evidence-based judgments regarding 
the psychometric fitness of WISC-V scores 
or the scientific soundness of interpretation 
schemes without complete and accurate infor­
mation. Likewise, researchers cannot adequately 

understand how to integrate w1SC-V scores 
into theoretical and practical models without 
complete and accurate information. "Bad usage 
of tests" (Buros, 1965, p. xxiv) is exacerbated 
by the great number of score comparisons and 
analyses promoted for the WISC-V Users 
should remember that "just because the test 
or its scoring software produces a score, you 
need not interpret it" (Kranzler & Floyd, 2013, 
p. 95). Furthermore, users must be mindful of 
the advice of Weiner (1989) that the ethical 
psychologist will "(a) know what their tests can 
do and (b) act accordingly" (p. 829). It is our 
hope that the information in this review and our 
independent analyses will provide the informa­
tion necessary for clinicians and researchers to 
follow this sage advice. 
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APPENDIX I
FACTOR ANALYSES (CHAPTER 20)

Gary L. Canivez and Marley W. Watkins

Given our criticism of the structural validity
analyses reported in the WISC–V Technical and
Interpretive Manual (Wechsler, 2014), the re-
mainder of Chapter 20—included as Appendix I
in the downloadable resources: www.wiley
.com/go/itwiscv—is devoted to an independent
examination of the WISC–V structure using
both exploratory factor analysis (EFA) and
confirmatory factor analysis (CFA) methods,
including presentation of variance estimates
for subtests and factors as well as model-based
latent factor reliability estimates. These analyses
and results should have been included in the
WISC–V Technical and Interpretive Manual,
and are presented here to allow clinicians and
researchers to assess additional psychometric
features of the WISC–V in order to determine
if various WISC–V scores possess sufficient
evidence of validity for clinical interpretations.

WISC–V EXPLORATORY
FACTOR ANALYSES

In the first section of Appendix I, we present a
series of EFA on the WISC–V.

Participants and Procedure

Participants were members of the WISC–V
normative sample (N = 2,200) who ranged in
age from 6 to 16 years. Demographic character-
istics are detailed in the WISC–V Technical and
Interpretive Manual. The WISC–V 16 subtest
correlation matrix for the full standardization
sample was obtained from Table 5.1 of that

manual; that table was produced by averaging
correlations from the 11 WISC–V age groups
through Fisher transformations.

Analyses

Principal axis exploratory factor analyses
(Fabrigar, Wegener, MacCallum, & Strahan,
1999) were used to analyze the WISC–V stan-
dardization sample correlation matrix using
SPSS 21 for Macintosh OSX. Multiple criteria
as recommended by Gorsuch (1983) were
examined to determine the number of factors
to retain and included eigenvalues > 1 (Kaiser,
1960), the scree test (Cattell, 1966), standard
error of scree (SEScree; Zoski & Jurs, 1996),
Horn’s parallel analysis (HPA; Horn, 1965), and
minimum average partials (MAP; Velicer, 1976).
Because the scree test is a subjective criterion,
the SEScree as programmed by Watkins (2007)
was used because it was reported to be the
most accurate objective scree method (Nasser,
Benson, & Wisenbaker, 2002).

HPA and MAP were included as they are
typically more accurate and are helpful so as
not to overfactor (Frazier & Youngstrom, 2007;
Velicer, Eaton, & Fava, 2000; Zwick & Velicer,
1986). HPA indicated meaningful factors when
eigenvalues from the WISC–V standardiza-
tion sample data were larger than eigenvalues
produced by random data containing the same
number of participants and factors. Random
data and resulting eigenvalues for HPA were
produced using the Monte Carlo PCA for
Parallel Analysis computer program (Watkins,
2000) with 100 replications to provide stable
eigenvalue estimates. Retained factors were

http://www.wiley.com/go/itwiscv
http://www.wiley.com/go/itwiscv
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subjected to promax (oblique) rotation (k = 4;
Gorsuch, 1983). Setting k to 4 produced greater
hyperplane count compared to k = 2 with the
present data. Salient factor pattern coefficients
were defined as those ≥.40, but where factor
pattern coefficients were between .30 and .39,
subtests were designated as “aligned” with the
latent factor.

J. B. Carroll (1995) argued that EFA results
“should be shown on the basis of orthogo-
nal factors, rather than oblique, correlated
factors. I insist, however, that the orthog-
onal factors should be those produced by the
Schmid-Leiman, 1957, orthogonalization proce-
dure” (p. 437). Accordingly, the first-order factor
correlation matrix was factor analyzed (principal
axis) and first-order factors were orthogonalized
by removing all variance associated with the
second-order dimension using the Schmid and
Leiman (1957) procedure as programmed in the
MacOrtho computer program (Watkins, 2004).
This transforms “an oblique factor analysis
solution containing a hierarchy of higher-order
factors into an orthogonal solution which
not only preserves the desired interpretation
characteristics of the oblique solution, but also
discloses the hierarchical structuring of the
variables” (Schmid & Leiman, 1957, p. 53).

The Schmid-Leiman (SL) orthogonalization
procedure produces an approximate exploratory
bifactor (Holzinger & Swineford, 1937) solution
(Canivez, in press), has a proportionality con-
straint (Yung, Thissen, & McLeod, 1999), and
may be problematic with nonzero cross-loadings
(Reise, 2012). Reise (2012) also noted two ad-
ditional and more recent alternative exploratory
bifactor methods that do not include proportion-
ality constraints: analytic bifactor (Jennrich &
Bentler, 2011) and target bifactor (Reise, Moore,
& Maydeu-Olivares, 2011). The present appli-
cation of the SL orthogonalization procedure
was selected because there are numerous studies
of its application with Wechsler scales (Canivez
& Watkins, 2010a, 2010b; Golay & Lecerf,
2011; Watkins, 2006) and with other intelligence
tests (Canivez, 2008, 2011; Canivez, Konold,

Collins, & Wilson, 2009; Dombrowski &
Watkins, 2013; Dombrowski, Watkins, &
Brogan, 2009; Nelson & Canivez, 2012; Nelson,
Canivez, Lindstrom, & Hatt, 2007), which
facilitates direct comparison of WISC–V results
to these other studies. For convenience, this
method is labeled SL bifactor (Reise, 2012).

Omega-hierarchical and omega-subscale
(Reise, 2012) were estimated as model-based re-
liability estimates of the latent factors (Gignac &
Watkins, 2013). F. F. Chen, Hayes, Carver,
Laurenceau, and Zhang (2012) noted that “for
multidimensional constructs, the alpha coeffi-
cient is complexly determined, and McDonald’s
(1999) omega-hierarchical (𝜔h) provides a better
estimate for the composite score and thus
should be used” (p. 228). These same problems
are inherent with other internal consistency
estimates such as split-half or KR-20. 𝜔h is the
model-based reliability estimate for the general
intelligence factor independent of the variance
of group factors. Omega-subscale (𝜔s) is the
model-based reliability estimate of a group
factor with all other group and general factors
removed (Reise, 2012). Omega estimates (𝜔h
and 𝜔s) may be obtained from EFA SL bifactor
solutions and were produced here using the
Omega program (Watkins, 2013), which is based
on the tutorial by Brunner, Nagy, and Wilhelm
(2012) and the work of Zinbarg, Revelle, Yovel,
and Li (2005) and Zinbarg, Yovel, Revelle, and
McDonald (2006).

Results

Exploratory Factor Analysis of the 16 WISC–V
Primary and Secondary Subtests
Principal axis (principal factors) EFA (SPSS
v. 21) produced a Kaiser-Meyer-Olkin Mea-
sure of Sampling Adequacy coefficient of .938
(more than adequate according to Kaiser, 1974)
and Bartlett’s Test of Sphericity was 15,619.3,
p < .0001, indicating that the correlation matrix
was not random. Communality estimates ranged
from .183 (Cancelation) to .735 (Vocabulary)
and the Mdn = .560.
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Factor Extraction Criteria Comparisons Of the
six methods to determine how many factors
to retain, only the publisher recommended
theoretical structure suggested five factors.
Minimum average partials indicated one factor;
eigenvalues > 1, scree, and parallel analysis each
recommended two factors; and the standard
error of scree indicated three factors. Figure I.1
presents scree plots from parallel analysis for
the 16 WISC–V primary and secondary sub-
tests. Because it has been suggested that it is
better to overextract than underextract (Fava &
Velicer, 1992; Gorsuch, 1997; Wood, Tataryn, &
Gorsuch, 1996), as overextracting allows exam-
ination of the performance of smaller factors,
EFA began with extracting five factors to exam-
ine subtest associations based on the publisher’s
suggested structure.

First-Order EFA: Five WISC–V Factor Extraction
Table I.1 presents results of the extraction of five
WISC–V factors with promax rotation. Subtest
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Figure I.1 Scree Plots for Horn’s Parallel Analysis for
WISC–V Standardization Sample (N = 2,200) 10 Pri-
mary Subtests Adapted from Figure 5.1(Wechsler, 2014d),
with standardized coefficients, for WISC–V standardiza-
tion sample (N = 2,200) 16 Subtests. SI = Similarities,
VC = Vocabulary, IN = Information, CO = Comprehension,
BD = Block Design, VP = Visual Puzzles, MR = Matrix
Reasoning, PC = Picture Concepts, FW = Figure Weights,
AR = Arithmetic, DS = Digit Span, PS = Picture Span,
LN = Letter–Number Sequencing, CD = Coding, SS =
Symbol Search, CA = Cancellation.

g-loadings ranged from .219 (Cancellation)
to .773 (Vocabulary). What was immediately
apparent was that the five-factor model is over-
factored. Factor 5 had only one salient subtest
pattern coefficient (Figure Weights), and no
other subtests were aligned with the fifth factor.
Factors cannot be defined by one indicator.
This overextraction further resulted in Matrix
Reasoning, Picture Concepts, and Arithmetic
failing to have salient loadings on any individual
factors.

Table I.1 illustrates robust Verbal Compre-
hension (Similarities, Vocabulary, Information,
Comprehension), Working Memory (Digit
Span, Picture Span, Letter–Number Sequenc-
ing), and Processing Speed (Coding, Symbol
Search, Cancellation) factors with theoretically
consistent and salient subtest associations.
The hypothesized Visual Spatial factor (Block
Design, Visual Puzzles) also emerged intact.
Arithmetic, while failing to exhibit a salient load-
ing on any factor, was moderately aligned with
the Working Memory factor. Fluid Reasoning
did not emerge as a viable latent factor. The
moderate to high factor correlations presented
in Table I.1 (.401–.726) imply a higher-order or
hierarchical structure that requires explication
(Gorsuch, 1983). Thus, ending analyses at this
point would be premature for full understanding
of the WISC–V structure.

SL Bifactor Analyses: Five WISC–V First-Order
Factors Results for the Schmid and Leiman
orthogonalization of the higher-order factor
analysis of the 16 WISC–V primary and sec-
ondary subtests are presented in Table I.2.
All subtests (except for Matrix Reasoning and
Picture Concepts, which had higher association
with the Visual Spatial factor after removing
their g-variance) were properly associated with
their theoretically proposed factor. The hierar-
chical g factor accounted for 35.9% of the total
variance and 66.3% of the common variance.

The general factor also accounted for between
4% and 50% (Mdn = 42%) of individual subtest
variability. At the first-order level, VC accounted
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6 APPENDIX I FACTOR ANALYSES (CHAPTER 20)

for an additional 4.8% of the total variance
and 8.9% of the common variance, WM ac-
counted for an additional 3.6% of the total
variance and 6.7% of the common variance, VS
accounted for an additional 2.6% of the total
variance and 4.7% of the common variance, and
PS accounted for an additional 6.3% of the total
variance and 11.6% of the common variance.
The underidentified Factor 5 accounted for an
additional 0.9% of the total variance and 1.7% of
the common variance. The general and specific
group factors combined to measure 54.1% of
the variance in WISC–V scores, resulting in
45.9% unique variance (combination of specific
and error variance). Subtest specificity (variance
unique to the subtest) estimates ranged from
.14 to .55. Because of the underidentified fifth
factor, omega coefficients were not estimated for
the five-group factor solution.

First-Order EFA: Four WISC–V Factor Extraction
Table I.3 presents results of the extraction of
four WISC–V factors with promax rotation.
What was immediately apparent was that the
four-factor model appeared to be a better
solution than the five-factor model and was
very similar to the WISC–IV. Picture Concepts
and Arithmetic again failed to exhibit salient
loadings on any group factor, but Arithmetic
was aligned with its theoretically appropriate
Working Memory factor. Picture Concepts dis-
played evenly divided factor pattern coefficients
on Verbal Comprehension and Perceptual Rea-
soning factors. Table I.4 illustrates robust Verbal
Comprehension (Similarities, Vocabulary, In-
formation, Comprehension), Working Memory
(Digit Span, Picture Span, Letter–Number
Sequencing), and Processing Speed (Coding,
Symbol Search, Cancellation) factors with
theoretically consistent and salient subtest asso-
ciations. Block Design, Visual Puzzles, Matrix
Reasoning, and Figure Weights converged and
had salient factor pattern coefficients on a fourth
factor, presumably Perceptual Reasoning. The
moderate to high factor correlations presented
in Table I.4 (.387–.747) imply a higher-order or

hierarchical structure that required explication
(Gorsuch, 1983). Thus, ending analyses at
this point would again be premature for full
understanding of the WISC–V structure.

SL Bifactor Analyses: Four WISC–V First-Order
Factors Results for the Schmid and Leiman
orthogonalization of the higher-order factor
analysis are presented in Table I.4. All subtests
(except for Picture Concepts, which had higher
association with the Verbal Comprehension
factor after removing g-variance) were properly
associated with their theoretically proposed
factor. The hierarchical g factor accounted for
35.5% of the total variance and 67.1% of the
common variance.

The general factor also accounted for be-
tween 4% and 50% (Mdn = 39%) of individual
subtest variability. At the first-order level, VC
accounted for an additional 4.8% of the total
variance and 9.2% of the common variance;
WM accounted for an additional 3.4% of the
total variance and 6.5% of the common variance;
PR accounted for an additional 3.0% of the total
variance and 5.6% of the common variance; and
PS accounted for an additional 6.2% of the total
variance and 11.6% of the common variance.
The general and group factors combined to mea-
sure 53.0% of the variance in WISC–V scores,
resulting in 47.0% unique variance (combination
of specific and error variance). Subtest specificity
(variance unique to the subtest) estimates ranged
from .14 to .63.

Omega-hierarchical and omega-subscale co-
efficients were estimated based on the SL results
in Table I.4. Because Picture Concepts had
roughly equivalent secondary loadings on Verbal
Comprehension and Perceptual Reasoning,
omega coefficients were separately estimated
with Picture Concepts assigned to Verbal Com-
prehension and then assigned to Perceptual
Reasoning. Omega-subscale (𝜔s) coefficients
for Verbal Comprehension and Perceptual Rea-
soning were both lower when Picture Concepts
was assigned to the respective group factor.
The 𝜔h coefficients for general intelligence
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(.833 and .834) were high and sufficient for scale
interpretation; however, the 𝜔s coefficients for
the four WISC–V specific group factors (VC,
WM, PR, PS) were considerably lower. Thus,
the four specific WISC-IV group factors, with
the possible exception of PS, likely possess too
little true score variance for clinicians to interpret
(Reise, 2012; Reise, Bonifay, & Haviland, 2013).

Exploratory Factor Analyses of the 10 WISC–V
Primary Subtests
Principal axis (principal factors) EFA (SPSS v.
21) produced a Kaiser-Meyer-Olkin Measure of
Sampling Adequacy coefficient of .884 (more
than adequate according to Kaiser, 1974) and the
chi-square value from Bartlett’s Test of Sphericity
was 8,324.68, p < .0001, indicating that the cor-
relation matrix was not random. Communality
estimates ranged from .473 (Matrix Reasoning)
to .742 (Visual Puzzles) with a median of .546.

Factor Extraction Criteria Comparisons Of the
six methods to determine how many factors to ex-
tract, only the publisher recommended structure
suggested five factors. Minimum average par-
tials indicated one factor; eigenvalues > 1, scree
the standard error of scree, and parallel anal-
ysis each recommended two factors. Figure I.2

0.00

1.00

2.00

3.00

4.00

5.00

1 2 3 4 5 6 7 8 9 10

E
ig

en
va

lu
e

Random Data

WISC-V Standardization Data (6–16)

Figure I.2 Scree Plots for Horn’s Parallel Analysis for
WISC–V Standardization Sample (N = 2,200) 10 Primary
Subtests

presents scree plots from HPA for the WISC–V
10 primary subtests. Because it has been sug-
gested that it is better to overextract than un-
derextract (Fava & Velicer, 1992; Gorsuch, 1997;
Wood et al., 1996), which allows examination of
the performance of smaller factors, EFA again
began with extracting five factors to examine sub-
test associations based on the publisher’s sug-
gested structure for the 10 primary subtests.

First-Order EFA: Five WISC–V Factor Extraction
Table I.5 presents results of the extraction of five
WISC–V factors from the 10 primary subtests
with promax rotation. Subtest g-loadings ranged
from .451 (Coding) to .741 (Vocabulary). When
only the 10 primary subtests are included, salient
factor pattern coefficients were produced for
subtests on the theoretically consistent factors,
and no salient cross-loadings were observed. The
moderate to high factor correlations presented
in Table I.6 (.374–.740) imply a higher-order or
hierarchical structure that requires explication
(Gorsuch, 1983).

SL Bifactor Analyses: Five WISC–V First-Order
Factors Results for the Schmid and Leiman
orthogonalization of the higher-order factor
analysis are presented in Table I.6. All subtests
were properly associated with their theoretically
proposed factor after removing g variance and
all subtests except Coding and Symbol Search
had larger portions of subtest variance associated
with the hierarchical general factor. The hierar-
chical g factor accounted for 36.9% of the total
variance and 63.5% of the common variance.

The general factor also accounted for between
18.1% and 47.3% (Mdn = 42.1%) of individ-
ual subtest variability. At the first-order level, VS
accounted for an additional 4.2% of the total
variance and 7.2% of the common variance, VC
accounted for an additional 4.4% of the total
variance and 7.5% of the common variance, PS
accounted for an additional 8.8% of the total
variance and 15.1% of the common variance,
WM accounted for an additional 3.0% of the to-
tal variance and 5.1% of the common variance,
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and FR accounted for an additional 1.0% of the
total variance and 1.7% of the common variance.
The general and specific group factors combined
to measure 58.2% of the variance in WISC–V
scores, resulting in 41.8% unique variance (com-
bination of specific and error variance).

Omega-hierarchical and omega-subscale co-
efficients were estimated based on the SL results
in Table I.6 to estimate the latent factor reliabil-
ities. The 𝜔h coefficient for general intelligence
(.812) was high and sufficient for scale interpre-
tation; however, the 𝜔s coefficients for the five
WISC–V specific group factors (VS, VC, PS,
WM, FR) were considerably lower, ranging from
.059 (FR) to .538 (PS). Thus, the five WISC–V
first-order factors, with the possible exception
of PS, likely possess too little true score vari-
ance for clinicians to interpret (Reise, 2012; Reise
et al., 2013).

First-Order EFA: Four WISC–V Factor Extraction
Table I.7 presents results of the extraction of four
WISC–V factors from the 10 primary subtests
with promax rotation. Subtest g-loadings ranged
from .450 (Coding) to .744 (Vocabulary). When
only the 10 primary subtests are included, salient
factor pattern coefficients were produced for
subtests on the theoretically consistent factors.
and no salient cross-loadings were observed. The
moderate to high factor correlations presented
in Table I.7 (.346–.742) imply a higher-order or
hierarchical structure that required explication
(Gorsuch, 1983).

SL Bifactor Analyses: Four WISC–V First-Order
Factors Results for the Schmid and Leiman
orthogonalization of the higher-order factor
analysis are presented in Table I.8. All subtests
were properly associated with their theoretically
proposed factor after removing g variance,
and all subtests except Coding and Symbol
Search had larger portions of subtest variance
associated with the hierarchical general factor.

The hierarchical g factor accounted for 36.7%
of the total variance and 64.9% of the common
variance.

The general factor also accounted for between
13.7% and 47.7% (Mdn = 40.9%) of individ-
ual subtest variability. At the first-order level,
PR accounted for an additional 3.9% of the to-
tal variance and 6.8% of the common variance;
VC accounted for an additional 4.4% of the to-
tal variance and 7.8% of the common variance;
PS accounted for an additional 8.7% of the total
variance and 15.4% of the common variance; and
WM accounted for an additional 2.8% of the to-
tal variance and 5.0% of the common variance.
The general and specific group factors combined
to measure 56.5% of the variance in WISC–V
scores, resulting in 43.5% unique variance (com-
bination of specific and error variance).

Omega-hierarchical and omega-subscale co-
efficients were estimated based on the SL results
in Table I.8 to estimate the latent factor reliabil-
ities. The 𝜔h coefficient for general intelligence
(.800) was high and sufficient for scale interpre-
tation; however, the 𝜔s coefficients for the four
WISC–V factors (PR, VC, PS, WM) were con-
siderably lower, ranging from .142 (PR) to .538
(PS). Thus, the four WISC–V first-order factors,
with the possible exception of PS, likely possess
too little true score variance for clinicians to in-
terpret (Reise, 2012; Reise et al., 2013).

WISC–V CONFIRMATORY
FACTOR ANALYSES

Preference for the higher-order model (general
intelligence as a superordinate dimension)
without examination and direct comparison with
a rival bifactor model (general intelligence as a
breadth dimension) is unwarranted (Canivez &
Kush, 2013; Gignac, 2008). Bifactor models
allow all subtests to load directly on both the
general factor and a group factor whereas
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higher-order factors restrict subtests to indirect
loadings on the general factor, mediated by the
group factors. Bifactor CFA models have sev-
eral technical benefits over EFA orthogonal so-
lutions (Reise, 2012), have been found to fit data
from other Wechsler scales (viz., Canivez, 2014a;
Gignac & Watkins, 2013; Nelson, Canivez, &
Watkins, 2013; Watkins, 2010; Watkins & Beau-
jean, 2014; Watkins, Canivez, James, James, &
Good, 2013), and have been recommended for
cognitive tests (Brunner et al., 2012; Canivez, in
press; Gignac, 2005, 2006). Figures 5.1 and 5.2
in the WISC–V Technical and Interpretive Man-
ual (and Figure 20.1 in Chapter 20 of Intelligent
Testing with the WISC–V ) illustrate higher-order
models and Figures I.5 and I.6 in this appendix
illustrate bifactor models.

Participants and Analyses

Participants were identical to those previously
employed in EFA analyses; namely, the 2,200
participants in the WISC–V standardization
sample. CFA was implemented with Mplus 7.3
(Muthén & Muthén, 2014). Covariance matrices
were computed by Mplus from the correlation
matrix, means, and standard deviations of the
total normative sample reported in Table 5.1 of
the WISC–V Technical and Interpretive Manual.
Given the size of the normative sample and the
multivariate normality of these data, maximum
likelihood (ML) estimation of model parameters
was employed. The ML estimator is “asymp-
totically consistent, unbiased, efficient, and
normally distributed” (Lei & Wu, 2012, p. 167)
and is the default method in Mplus. Scaling for
identification of models was accomplished with
marker variables (T. D. Little, Slegers, & Card,
2006), the default in Mplus.

The structural models specified in Table 5.3
of the WISC–V Technical and Interpretive Man-
ual were tested. In addition, bifactor models were
included in our analyses. See Figures 21.4 and
21.5 for a complete enumeration of the models

examined in this study. Although there are no
universally accepted cutoff values for approxi-
mate fit indices (McDonald, 2010), overall model
fit was evaluated with the comparative fit in-
dex (CFI), root mean square error of approx-
imation (RMSEA), Tucker-Lewis index (TLI),
and the standardized root mean squared residual
(SRMR). Higher values indicate better fit for
the CFI and TLI whereas lower values indicate
better fit for the SRMR and RMSEA. Applying
the combinatorial heuristics of Hu and Bentler
(1999), criteria for adequate model fit were CFI
and TLI ≥ .90 along with SRMR ≤ .09 and RM-
SEA ≤ .08. Good model fit required CFI ≥ 0.95
with SRMR and RMSEA ≤ 0.06 (Hu & Bentler,
1999). For a model to be considered superior, it
had to exhibit adequate to good overall fit and
display meaningfully better fit (ΔCFI > .01 and
ΔRMSEA > .015) than alternative models (Che-
ung & Rensvold, 2002). Additionally, the Akaike
Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC) were consulted. Nei-
ther AIC nor BIC has a meaningful scale but the
model with the smallest AIC and BIC values are
most likely to replicate (Kline, 2011).

Finally, to assess the latent factor reliabilities,
omega-hierarchical and omega-subscale (Reise,
2012) were estimated as more appropriate relia-
bility estimates of the factors (Gignac & Watkins,
2013). 𝜔h is the model-based reliability estimate
for the general intelligence factor with variabil-
ity of group factors removed. Omega-subscale
(𝜔s) is the model-based reliability estimate of a
specific group factor with all other group and
general factors removed (Brunner et al., 2012;
Reise, 2012). Omega estimates (𝜔h and 𝜔s) may
be obtained from CFA bifactor solutions and
were produced here using the Omega program
(Watkins, 2013).

Results

Results from CFAs are presented in Table I.9.
For the 16 WISC–V primary and secondary
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Model 2

Subtest

SI

F1 F2 F1 F2 F3 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1g F2 F3 F4

VC

IN

CO

BD

VP

MR

FW

PC

AR

DS

PS

LN

CD

SS

CA

Model 3 Model 4a Model 4b Model 4c Model 4d Model 4a Bi-factor

Figure I.3 Confirmatory Factor Models of WISC–V Subtests with Two to Four First-Order Factors 𝜎 = 16 subtest models,
𝜏 = 10 subtest models, and 𝜐 = both 10 and 16 subtest models. Models 2 to 4d include a higher-order general factor.
SI = Similarities, VC = Vocabulary, IN = Information, CO = Comprehension, BD = Block Design, VP = Visual Puzzles,
MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, AR = Arithmetic, DS = Digit Span, PS = Picture
Span, LN = Letter-Number Sequencing, CD = Coding, SS = Symbol Search, and CA = Cancellation.

Subtest

SI

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

VC

IN

CO

BD

VP

MR

FW

PC

AR

DS

PS

LN

CD

SS

CA

Model 5a Model 5b Model 5c Model 5d Model 5e

Figure I.4 Confirmatory Factor Models of WISC–V Subtests with Five First-Order Factors 𝜎 = 16 subtest models,
𝜏 = 10 subtest models, and 𝜐 = both 10 and 16 subtest models. Models 2 to 4d include a higher-order general factor.
SI = Similarities, VC = Vocabulary, IN = Information, CO = Comprehension, BD = Block Design, VP = Visual Puzzles,
MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, AR = Arithmetic, DS = Digit Span, PS = Picture
Span, LN = Letter-Number Sequencing, CD = Coding, SS = Symbol Search, and CA = Cancellation.
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SI VC IN CO BD VP MR PC FW DS PS LN CD SS CA

Verbal
Comprehension

Working
Memory

Processing
Speed

General
Intelligence

Perceptual
Reasoning

.720*

.352* .463* .384* .325* .382* .483* .137* .163* .060* .129* .493* .296* .452* .626* .678* .368*

.727* .721* .625* .639* .648* .641* .649* .530* .736* .660* .548* .649* .366* .425* .189*

AR

Figure I.5 Bifactor Measurement Model (4a Bifactor), with Standardized Coefficients, for WISC–V Standardization Sample
N = 2,200, 16 Subtests. SI = Similarities, VC = Vocabulary, IN = Information, CO = Comprehension, BD = Block Design,
VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, AR = Arithmetic, DS = Digit
Span, PS = Picture Span, LN = Letter–Number Sequencing, CD = Coding, SS = Symbol Search, CA = Cancellation. *p < .05.

subtests, all five of the models that included
five first-order factors resulted in inadmissible
solutions (i.e., negative variance estimates for
the FR factor) potentially caused by misspecifi-
cation of the models (Kline, 2011). In contrast,
all five models that included four first-order
factors demonstrated good fit to these data.
No single four-factor model was superior in
terms of ΔCFI > .01 and ΔRMSEA > .015,
but AIC and BIC values were lowest for the
bifactor version that collapsed the FR and VS
dimensions (r = .91) into a single (PR) factor
(see Figure I.5).

Table I.10 presents sources of variance from
the 16 WISC–V primary and secondary subtests
according to the bifactor model with four group
factors, which are very similar to the SL bifac-
tor results from EFA. Most subtest variance is
associated with the general intelligence dimen-
sion, and much smaller portions of variance are
uniquely associated with the four specific group
factors. Omega-hierarchical and omega-subscale
coefficients were estimated based on the bifactor

results from Table I.10. The 𝜔h coefficient for
general intelligence (.849) was high and sufficient
for scale interpretation; however, the 𝜔s coeffi-
cients for the four WISC–V factors (PR, VC,
PS, WM) were considerably lower, ranging from
.109 (PR) to .516 (PS). Thus, the four WISC–V
first-order factors, with the possible exception of
PS, likely possess too little true score variance for
clinicians to interpret (Reise, 2012; Reise et al.,
2013).

For the 10 WISC–V primary subtests, four-
and five-factor models demonstrated good fit
to these data. No single four- or five-factor
model was superior in terms of ΔCFI > .01 and
ΔRMSEA > .015, but AIC values were lowest
for the bifactor version that collapsed the FR and
VS dimensions (r = .90) into a single (PR) factor
(see Figure 21.7). Table I.11 presents sources
of variance from the 10 WISC–V primary
subtests according to the bifactor model with
four group factors, which are very similar to SL
bifactor results. Again, most subtest variance
is associated with the general intelligence
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SI VC BD VP MR FW DS PS CD SS

Processing
Speed

General
Intelligence

.655* .655*

Working
Memory

Perceptual
Reasoning

.388* .388*.289* .498* .041* .099*

Verbal
Comprehension

.441* .441*

.693* .702* .673* .677* .670* .664* .655* .549* .357* .424*

Figure I.6 Bifactor measurement model (4a Bifactor), with standardized coefficients, for WISC–V standardization sample
(N = 2,200) 10 Primary Subtests. SI = Similarities, VC = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix
Reasoning, FW = Figure Weights, DS = Digit Span, PS = Picture Span, CD = Coding, SS = Symbol Search. *p< .05.

dimension and smaller portions of variance
are uniquely associated with the specific group
factors. Omega-hierarchical and omega-subscale
coefficients were estimated based on the bifactor
results from Table I.11. The 𝜔h coefficient
for general intelligence (.817) was high and
sufficient for scale interpretation; however, the

𝜔s coefficients for the four WISC–V factors (PR,
VC, PS, WM) were considerably lower, ranging
from .087 (PR) to .543 (PS). Thus, the four
WISC–V first-order factors, with the possible
exception of PS, likely possess too little true
score variance for clinicians to interpret (Reise,
2012; Reise et al., 2013).
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